STEREOCHEMICAL CONSEQUENCE IN THE ELIMINATION OF β -HYDROXYALKYLSILANES: STEREOSELECTIVE FORMATION OF (Z)- AND (E)-ALKYLIDENE- γ -BUTYROLACTONES

Keiji YAMAMOTO*, Yoichi TOMO, and Shigeaki SUZUKI Department of Chemical Engineering, Tokyo Institute of Technology, Tokyo 152, JAPA

Summary: Titanium(IV) chloride-mediated reaction of 4,5-dihydro-2-(trimethylsiloxy)-3-(trimethylsilyl)furan (la) with acetaldehyde gave diastereomerically pure $(3S^*, 1^!R^*)-4,5$ -dihydro-3-(1'hydroxyethyl)-3-(trimethylsilyl)-2(3H)furanone (2a), which afforded selectively either (Z)- or (E)- α -ethylidene- γ -butyrolactone (3a) under proper conditions. Facile isomerization of 2a into diastereomerically pure $(3S^*, 1^!R^*)-4,5$ -dihydro-3-(1'-(trimethylsiloxy)ethyl)-2(3H)furanone (4) suggests an intriguing stereochemical outcome from 2a to (E)-3a via an enolate of 4.

It has been well precedented that the addition of an α -silyl carbanion stabilized by an electron-withdrawing group(Z) to an aldehyde or ketone forms a presumed β -oxidoalkylsilane, which undergoes spontaneous elimination even at low temperature to give an olefinic compound usually as a mixture of geometrical isomers (eq. 1).

In contrast, it is noted that the reaction of aldehydes with an enolate generated from α -(trimethylsilyl)- γ -butyrolactone reportedly gives an α -alkylidene γ -butyrolactone with predominant (E)-geometry, α) the results implicating stereospecific elimination of a sole intermediate β -oxidosilane rather than thermodynamically preferred formation of the trans olefin. However, few preparations of diastereomerically pure β -hydroxyalkylsilanes have been reported in the literature

We wish to report here a preparation of one diastereomer of a β -hydroxyalkylsilane derived from γ -butyrolactone and the stereochemical consequence in the elimination of the diastereomer under proper conditions. Thus 4,5-dihydro-2-(trimethylsiloxy)-3-(trimethylsilyl)furan (la) was prepared from γ -butyrolactone by a literature method (eq. 2)⁴

$$(CH2)n + 2 Me3SiOTf $Et3N$ (CH₂)_n SiMe₃ $Ia; n=1, R=H$ (2)
$$(Tf=CF3SO2)$$$$

Similarly, 1b and 1c were prepared in good yields from γ -valerolactone and δ -valerolactone, respectively.

TiCl₄-assisted aldol reaction was carried out in the following procedure: To a cooled (-78°C) and stirred solution of acetaldehyde (1.7 ml, 30 mmol) and TiCl₄ (1.7 ml, 15 mmol) in dry dichloromethane (6 ml) was added dropwise la (3. g, 15 mmol) dissolved in dichloromethane (12 ml) over a period of 0.5 h. The rition mixture was stirred for additional 1.5 h and quenched with methanol (15 ml Aqueous workup followed by usual purification gave analytically pure 4,5-dihydra-(1'-hydroxyethyl)-3-(trimethylsilyl)-2(3E)furanone (2a) as a white solid (2.9 98% yield). NMR (CDCl₃, TMS): δ 0.19 (s, 9H), 1.23 (d, J = 6.2 Hz, 3H), 2.15-2.75 (m, 2H), 2.87 (brs, 1H), and 3.92-4.53 ppm (m, 3H). IR (CCl₄ soln): 3620 (OH free), 3480 (OH hydrogen bonded), 1735 (C=0), 1450 and 1250 cm⁻¹(SiMe₃).

The most striking is that 2a was readily obtained as a pure diastereomer. ⁵ In fact, in another run at a higher reaction temperature (-40°C) there obtained mixture of diastereomers (ratio 85 : 15) which are evidenced by NMR using Eu(for Doublets of methyl protons were observed at δ 1.23 and 1.36 ppm, respectively.

Diastereomerically pure 2a thus obtained is most likely $(3S^*, 1'R^*)$ on the basis of a preferred six-membered transition state of directed aldol reactions which are of current interest, 6) and of results of the Peterson olefination reactions as discussed below. The stereochemical correlations obtained in the present study are outlined in Scheme 1.

Scheme 1

OSiMe 3 MeCHO

OF TiCl 4

R'

OSIMe 3 MeCHO

TiCl 4

R'

$$(z)$$
 - 3a $(z/E=9)$

Lin(SiMe 3) 2

Me

 (z) - 3a $(z/E=9)$

Me

 (z) - 3a $(z/E=9)$
 (z) - 3a $(z/E=9)$

Treatment of 2a (0.202 g, 1.0 mmol) with BF₃·OEt₂ (1.26 ml, 10 mmol) in dichlore methane (10 ml) at -20°C for 2.5 h followed by usual work-up afforded quantitatively α -ethylidene- γ -butyrolactone (3a) with predominant (2)-configuration, 7) ratio \mathbb{Z}/\mathbb{E} being 95/5 by GLC analysis. Since it is known that the acid-catalyzed elimination of β -hydroxyalkylsilanes takes place by an anti pathway, 3) highly stereoselective formation of (2)-3a reinforces the relative configuration of diastereomerically pure 2a to be (35*, 1°R*).

Reaction of 2a (1.0 mmol) with lithium bis(trimethylsilyl)amide, prepared from hexamethyldisilazane (0.30 ml, 1.4 mmol) and BuLi (1.2 mmol), in dry THF (ml) at -78°C for 2.5 h yielded (E)-3a (58%), which was contaminated with 4% or (Z)-3a, α -vinyl- γ -butyrolactone (17%), and 4,5-dihydro-3-{1'(trimethylsiloxy)-ethyl}-2(3H) furanone (4) (19% area ratio by GLC), which was found to diminish we

prolonged reaction time.

Formation of 4 must arise from facile 1,3-migration of a trimethylsilyl group from carbon to oxygen. That 4 unexpectedly consisted of one diastereomer was firmly verified in the following way as depicted in scheme 2.

Scheme 2

Preparation of 4,5-dihydro-3-(1'-hydroxyethy1)-2(3H) furanone (5) was carried out exactly in the same manner as that of 2a using 4,5-dihydro-2-(trimethylsiloxy) furan (1a, R'=H) (0.55 g, 3.5 mmol). Purified 5 (56% yield) was obtained as a mixture of diastereomers in a ratio 70/30.9 On the basis of preferred transition state (I) (R'=H) in the scheme 1, these diastereomers may well be assigned as (R^*,R^*) and (R^*,S^*) , respectively.

Silylation of the alcohol (5) (0.137 g, 0.5 mmol) with bis(trimethylsilyl)-acetamide (0.25 ml, 1.2 mmol) in dry acetonitrile (10 ml) gave, after column-chromatographic purification, a diastereomeric mixture of 4 (0.083 g, 39%), which are analyzed by GLC and by NMR using Eu(fod) $_3$.

Finally, a THF solution of 2a (0.187 g, 0.92 mmol) was treated with a catalytic amount of $LiN(SiMe_3)_2$ (5 mol%) at -78°C for 3 h. Usual workup and separation of crude products by a short column afforded (E)-3a (0.028 g, 27%) and diastereomerically pure 4 (0.124 g, 66%), respectively. Unambiguous assignment of (35*, 1^*R^*)-4 could be made by GLC and NMR analyses in comparison with the above sample.

The significant features of the present base-induced isomerization and β -elimination of 2a to give 4 and (E)-3a, respectively, may be twofold.

First, it is clearly indicated that under base-catalyzed conditions the β -oxidosilane (II) once formed from 2a may undergo either syn-elimination to give (E)-3a or migration of a trimethylsilyl group to form a lactone enolate (III), which, in turn, is protonated with 2a present in excess to give stereoselectively (35*, 1'R*)-4 and the β -oxidosilane (II). Although the stereoselective protonation may be very specific in steric origin in the present reaction, it is important to find that the 1.3-migration of a trimethylsilyl group in (II) to form an ambident anion (III) is faster than a direct syn-elimination to give (E)-3a.

Rapid 1,4-migration of a trimethylsilyl group in γ -oxidoalkylsilanes⁸⁾ as well 1,2-migration in α -oxidoalkylsilanes¹⁰⁾ has already been discussed.

Secondly and consequently, all data presented here let us suggest that in base-induced elimination of β -hydroxyalkylsilanes (and intermediate β -oxidosila also) where a carbanion-stabilizing group is located on a carbon α to the silic facile 1,3-migration of a silyl group very likely takes part in the elimination pathway, the resulting β -siloxyalkyl carbanion entering the final elimination s to give product olefins. Although this pathway does not necessarily preclude a direct syn-elimination as mentioned above, stereoselective formation of (E)-3a from 2a is alternatively accounted for by an exclusive anti-elimination of a trimethylsiloxy group form (III), which is consonant with the fact that (III) i found to be protonated with inversion of configuration at carbon.

Different stereochemical outcome from 1b and 1c will be reported in due co

References and Notes

- 1) For review: P.F.Hudrlik, 'New Applications of Organometallic Reagents in Organic Synthesis', D.Seyferth, Ed., Elsevier (1976), pp127-159.
- 2) a) P.A.Grieco, C.J.Want, and S.D.Burke, Chem. Commun., 537 (1975).
 - b) P.F.Hudrlik, D.Peterson, and D.Lhou, Synth. Commun., 5, 359 (1975).
- 3) a) P.F.Hudrlik and D.Peterson, J. Am. Chem. Soc., 97, 1464 (1975).
 - b) P.F.Hudrlik, D.Peterson, and R.J.Rona, <u>J. Org. Chem.</u>, <u>40</u>, 2263 (1975).
- 4) H.Emde and G.Simchen, Synthesis, 867 (1977).
- 5) Similarly, the reaction of <u>la</u> with benzaldehyde gave a diastereomerically p β -hydroxyalkylsilane which afforded on treatment with BF₃·OEt₂ almost pure (Z)- α -benzylidene- γ -butyrolactone. NMR (CDCl₃, TMS) δ 3.07 (dt, J = 7.2, 2.4 Hz, 2H), 4.35 (t, J = 7.2 Hz, 2H), 6.97 (t, J = 2.4 Hz, 1H), 7.20-7.55 3H), and 7.68-7.95 ppm (m, 2H).
- 6) a) T.H.Chan, T.Aida, P.W.K.Lau, V.Gorys, and D.N.Harpp, Tetrahedron Lett., 4029 (1979).
 - b) D.A.Evans, E.Vorel, and J.V.Nelson, <u>J. Am. Chem. Soc.</u>, <u>101</u>, 6120 (1979), and references therein.
- 7) Although there has been reported a variety of synthetic methods of a geomet al mixture of α-alkylidene-γ-butyrolactones, none is hitherto known to give stereoselectively a (Z)-isomer. For photoisomerization of (E)-α-ethylidene γ-butyrolactone to the (Z)-isomer, see K.Ohga and T.Matsuo, <u>Bull. Chem. Soc</u> <u>Jpn., 46</u>, 2181 (1973). For α-benzylidene analog, V.N.Dashunin and R.I. Shckhtman, <u>Zh. Org. Khim., 8</u>, 2596 (1972).
- 8) I.Matsuda, S.Murata, and Y.Izumi, Bull. Chem. Soc. Jpn., 52, 2389 (1979).
- 9) NMR (CCl₄) using Eu(fod)₃ (<u>ca</u>. 13 mol⁸): $(R^*, R^*) \frac{4}{2}$, $\Delta \delta$ 0.20 (SiMe₃) and 0 ppm (CHMe), $(R^*, S^*) 4$, $\Delta \delta$ 0.34 (SiMe₃) and 0.32 ppm (CHMe).
- 10) P.F.Hudrlik, G.Nagendrappa, A.K.Kulkarn, and A.M.Hudrlik, <u>Tetrahedron Lett</u> 2237 (1979), and references therin.